
Java API for
RESTful
Web Services
Aleksandar Kartelj

Faculty of Mathematics

University of Belgrade

14th Workshop on Software Engineering Education and Reverse Engineering, Sinaia, 2014.

What is a Web Service?

• “Web page” supposed to be consumed by
autonomous program instead web browser

• Designed for small scales and single trust
domains

• Problem: communication among various
services belonging to different trust domains

2/14

Software connectors

Image taken from Cesare Pautasso, ECOWS’10

3/14

Software connectors

Image taken from Cesare Pautasso, ECOWS’10

4/14

Internet URI language

• Online language, i.e. the collection
of nouns and verbs

• Nouns are represented (equivalent) to URIs

• Verbs are general, they represent
actions among nouns:

• GET – get a resource

• POST – create a resource - unsafe

• PUT – create or update a resource
DELETE – delete a resource

5 /14

What is REST?

• REpresentational State Transfer

• Not a platform or tool

• Just the way of representing
already existing Web infrastructure

• Usually (not necessary) based on HTTP
6 /14

REST “state machine”

7 /14

WS* and REST comparison

Feature REST WS-*

Discovery Referral Centralized

Identification Global Context-based

Binding Late Late

Platform Independent Independent

Interaction Asynchronous Asynchronous

Model Self-describing Shared

State Stateless Stateless

Generated Code None Static

Conversation Reflective Explicit 8 /14

JAX-RS API

• Java API designed to help in building REST applications

• Programmer just decorates Java methods
with annotations:
• 4 x CRUD operations (@GET, @POST, @PUT, @DELETE)

• @Path

• @HEAD

• @PathParam

• @QueryParam

• @Consumes

• @Produces

9 /14

Example – client side

$.ajax({

 url: "/world/news/getNews/" + from + "/" + to

 type: "GET",

 dataType: "json",

 async: false,

 success: function (data) {

 self.data = data;

 //loading inbox…

 }

});

10 /14

Example - server side

@Path("/news")

public class NewsREST {

 @EJB

 NewsService newsService;

 @GET

 @Path("/getNews/{from}/{to}")

 @Consumes("application/json")

 public Response getNews(@Context HttpServletRequest req,

 @PathParam("from") Integer from,

 @PathParam("to") Integer to) {

 return newsService.getNews(from,to);

 }

…

}

11 /14

Ongoing project that uses REST

• Online social game (will be released in October 2014)

• Real-time

• Several hundreds of REST procedures

• Scalable

• REST+JSON reduced overall bandwidth

12 /14

Conclusions

• Easy to implement

• Scalable components interactions

• Independent deployment of connectors

• Reduced interaction latency

• Increased security – HTTPS

• Supports caches and proxies by default

• Enables transfers of unlimited size and type

• Real-time applications

• General interfaces (GET, POST, PUT, DELETE)

• …

13 /14

THANK YOU FOR ATTENTION.

kartelj@math.rs

aleksandar.kartelj@gmail.com

http://www.math.rs/~kartelj

14 /14

mailto:kartelj@math.rs
mailto:aleksandar.kartelj@gmail.com
http://www.math.rs/~kartelj

